159 research outputs found

    A note on irreducible maps with several boundaries

    Get PDF
    We derive a formula for the generating function of d-irreducible bipartite planar maps with several boundaries, i.e. having several marked faces of controlled degrees. It extends a formula due to Collet and Fusy for the case of arbitrary (non necessarily irreducible) bipartite planar maps, which we recover by taking d=0. As an application, we obtain an expression for the number of d-irreducible bipartite planar maps with a prescribed number of faces of each allowed degree. Very explicit expressions are given in the case of maps without multiple edges (d=2), 4-irreducible maps and maps of girth at least 6 (d=4). Our derivation is based on a tree interpretation of the various encountered generating functions.Comment: 18 pages, 8 figure

    Distance statistics in large toroidal maps

    Full text link
    We compute a number of distance-dependent universal scaling functions characterizing the distance statistics of large maps of genus one. In particular, we obtain explicitly the probability distribution for the length of the shortest non-contractible loop passing via a random point in the map, and that for the distance between two random points. Our results are derived in the context of bipartite toroidal quadrangulations, using their coding by well-labeled 1-trees, which are maps of genus one with a single face and appropriate integer vertex labels. Within this framework, the distributions above are simply obtained as scaling limits of appropriate generating functions for well-labeled 1-trees, all expressible in terms of a small number of basic scaling functions for well-labeled plane trees.Comment: 24 pages, 9 figures, minor corrections, new added reference

    Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop

    Full text link
    We consider quadrangulations with a boundary and derive explicit expressions for the generating functions of these maps with either a marked vertex at a prescribed distance from the boundary, or two boundary vertices at a prescribed mutual distance in the map. For large maps, this yields explicit formulas for the bulk-boundary and boundary-boundary correlators in the various encountered scaling regimes: a small boundary, a dense boundary and a critical boundary regime. The critical boundary regime is characterized by a one-parameter family of scaling functions interpolating between the Brownian map and the Brownian Continuum Random Tree. We discuss the cases of both generic and self-avoiding boundaries, which are shown to share the same universal scaling limit. We finally address the question of the bulk-loop distance statistics in the context of planar quadrangulations equipped with a self-avoiding loop. Here again, a new family of scaling functions describing critical loops is discovered.Comment: 55 pages, 14 figures, final version with minor correction

    Confluence of geodesic paths and separating loops in large planar quadrangulations

    Full text link
    We consider planar quadrangulations with three marked vertices and discuss the geometry of triangles made of three geodesic paths joining them. We also study the geometry of minimal separating loops, i.e. paths of minimal length among all closed paths passing by one of the three vertices and separating the two others in the quadrangulation. We concentrate on the universal scaling limit of large quadrangulations, also known as the Brownian map, where pairs of geodesic paths or minimal separating loops have common parts of non-zero macroscopic length. This is the phenomenon of confluence, which distinguishes the geometry of random quadrangulations from that of smooth surfaces. We characterize the universal probability distribution for the lengths of these common parts.Comment: 48 pages, 33 color figures. Final version, with one concluding paragraph and one reference added, and several other small correction

    Planar maps and continued fractions

    Full text link
    We present an unexpected connection between two map enumeration problems. The first one consists in counting planar maps with a boundary of prescribed length. The second one consists in counting planar maps with two points at a prescribed distance. We show that, in the general class of maps with controlled face degrees, the solution for both problems is actually encoded into the same quantity, respectively via its power series expansion and its continued fraction expansion. We then use known techniques for tackling the first problem in order to solve the second. This novel viewpoint provides a constructive approach for computing the so-called distance-dependent two-point function of general planar maps. We prove and extend some previously predicted exact formulas, which we identify in terms of particular Schur functions.Comment: 47 pages, 17 figures, final version (very minor changes since v2

    Combinatorics of Hard Particles on Planar Graphs

    Full text link
    We revisit the problem of hard particles on planar random tetravalent graphs in view of recent combinatorial techniques relating planar diagrams to decorated trees. We show how to recover the two-matrix model solution to this problem in this purely combinatorial language.Comment: 35 pages, 20 figures, tex, harvmac, eps

    Planar maps as labeled mobiles

    Full text link
    We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences, to obtain a bijection with a new class of labeled trees, which we call mobiles. Our bijection covers all the classes of maps previously enumerated by either the two-matrix model used by physicists or by the bijection with blossom trees used by combinatorists. Our bijection reduces the enumeration of maps to that, much simpler, of mobiles and moreover keeps track of the geodesic distance within the initial maps via the mobiles' labels. Generating functions for mobiles are shown to obey systems of algebraic recursion relations.Comment: 31 pages, 17 figures, tex, lanlmac, epsf; improved tex

    More on the O(n) model on random maps via nested loops: loops with bending energy

    Full text link
    We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows to express the partition function of the O(n) loop model as a specialization of the multivariate generating function of maps with controlled face degrees, where the face weights are determined by a fixed point condition. We deduce a functional equation for the resolvent of the model, involving some ring generating function describing the immediate vicinity of the loops. When the ring generating function has a single pole, the model is amenable to a full solution. Physically, such situation is realized upon considering loops visiting triangles only and further weighting these loops by some local bending energy. Our model interpolates between the two previously solved cases of triangulations without bending energy and quadrangulations with rigid loops. We analyze the phase diagram of our model in details and derive in particular the location of its non-generic critical points, which are in the universality classes of the dense and dilute O(n) model coupled to 2D quantum gravity. Similar techniques are also used to solve a twisting loop model on quadrangulations where loops are forced to make turns within each visited square. Along the way, we revisit the problem of maps with controlled, possibly unbounded, face degrees and give combinatorial derivations of the one-cut lemma and of the functional equation for the resolvent.Comment: 40 pages, 9 figures, final accepted versio

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    Matrix integrals and enumeration of maps

    Full text link
    This chapter is an introduction to the connection between random matrices and maps, i.e graphs drawn on surfaces. We concentrate on the one-matrix model and explain how it encodes and allows to solve a map enumeration problem.Comment: chapter of the "The Oxford Handbook of Random Matrix Theory", editors G. Akemann, J. Baik and P. Di Francesco ; 24 pages and 5 figure
    corecore